Converter Topologies

Pulsed Power Engineering Michigan State University February 3 – 7, 2025

Craig Burkhart and (Guest lecturer) Tony Beukers

Will Waldron

Lawrence Berkeley National Laboratory

Chris Jensen Fermilab Fermi National Accelerator Laboratory

Jared Walden and (Guest lecturer) G. Chris Pappas (retired)

Bringing Science Solutions to the World

Converter Topologies in Pulsed Power Systems

- Useful in longer pulse applications where τ >> 1/f $_{s}$ (τ >100 μs to DC)
- Enabled by high voltage (≤10 kV) high current (multi-kA) semiconductor power modules
- Pulsed power applications often require use of transformers to achieve required voltage levels (or series-stacked modules)
- Typical converter topologies utilized shown there are several other options and various switching schemes

Converter Topologies Benefits

- Evolution of solid-state switching modules to relevant power and voltage levels enabled this technology in 1990s
- Draws heavily on Power Electronics field of Electrical Engineering

Advantages	Disadvantages
High efficiency (>90%) achievable due to soft switching	Often use many solid-state switching devices and diodes
Reduces stored energy requirements compared to hard tube modulator	Large number of components may lead to less reliable design
Can eliminate need for crowbar circuit	Complex controls with multiple feedback loops and precise device timing
Modular architectures	Not feasible for short pulse applications
Can incorporate redundancy in some topologies	
Can mitigate PF and harmonics on utility grid	
Overall system volume can be reduced compared to traditional topologies	

Ampegon Pulse Step Modulator

Line frequency diode rectifiers with isolation transformers to create unregulated DC power
Series-stacked boost converters to create HV in individual modules
Add redundancy with additional modules, diode/switch to bypass inactive modules

•Modulator configuration with reduced MTTR

H-J. Eckoldt, "Long Pulse Modulators", CAS-CERN Accelerator School: Power Converters, Switzerland, 2014.

JEMA Modulator

- Developed for the European Spallation Source
- •Inverters charge series-stacked capacitors through transformer
- •Add redundancy with additional modules, diode/switch to bypass inactive modules
- •Modulator configuration with reduced MTTR

O.D. Cortazar, et al., "A 100 kV, 60 A solid state 4 kHz switching modulator for high power klystron driving", Rev. Sci.

Developed for the European Spallation Source
Active front end and constant power charging maintains stringent Swedish PF, harmonics and flicker requirements

•Inverters drive step-up transformers to charge series-connected capacitors

M. Collins, et al., "Stacked multi-level long pulse modulator topology for ESS", Proc. IEEE Intl. Power Modulator Conf., San Francisco, 2016, p. 552.

Parallel Resonant Converter - Modulator

- Parallel resonant converter
 - Chopping at solid-state switch voltage
 - AC transformer steps up to high voltage
 - Soft (zero-voltage switching) ZVS achievable
- Poly-phase for high power operation within safe operating area of switches
- Resonant circuit
 - Transformer leakage inductance
 - Tuning capacitor
- Rectification
- Filtering
 - LC circuit

Yu, S., Chen, R. and Viswanathan, A., "Survey of Resonant Converter Topologies", TI SLUP376, 2018.

High Voltage Converter Modulator System Overview

- Provides up to 135 kV, 1.35 ms pulses at 60 Hz to amplify RF up to 5 MW
- Variable pulse widths 0.3-1.4 ms
- IGBTs chop at 20 kHz nominal
- Powers multiple klystrons up to 11 MW peak power, 1 MW average
- 18 operational modulators, 3 test stand modulators
- Approximately 1.5×10⁶ combined hours

Spallation Neutron Source High Voltage Converter Modulator

Actional Laboratory

9

HVCM Substation Power Transformer

Operates at 13.8 kV distribution voltage
Meets IEE-519 harmonics standard

•h=5, 7.8% measured

•h=7, 5.2% measured

• Cast coil construction

•Over 225 years combined operation, no major failures

HVCM SCR Controller

- •Converts 2100 V_{RMS} to ±1300 V, 450 A DC
- •Voltage stability ≤0.1% at constant load
- •Regulation ≤2% from 25-100% full load
- •Simple 6-pulse system with thyristor control
- •System self-contained with rudimentary remote interface capability

HVCM Modulator System

Energy storage capacitors and IGBT H-bridge switch plates located inside Safety Enclosure
HV boost transformers, rectifiers and filter components inside oil-insulated tank
Ancillary systems for cooling water distribution, oil circulation, CO₂ fire suppression system and diagnostics/controls

HVCM Control System

•New controller developed at ORNL using National Instruments FlexRIO FPGAs and analog/digital I/O

•Enhanced capabilities over previous controller

- First Fault detection to 25 ns resolution
- Pulse Flattening
- Full waveform capture
- Set warning/trip levels
- Additional operational modes
- Enhanced IGBT functionality integrated
- Intellectual property ownership

• Expandable

Pulsed Power Engineering Winter 2025

14 100 10

Zoom ALL Charts To Extents

土風の

HVCM Control System

SNS HVCM Advantages

- 20 kHz inverter frequency
 - Small transformers
 - Small output filter
 - Fast risetime (<100 μs)
 - Low stored energy: minimize arc fault energy
- Low inverter voltage (~2 kV)
 - H-bridge is air insulated
 - Only low maintenance HV components are in oil
- The resonant peaking capacitors allow fault "ride-through" capabilities.
 - Load impedance changes (such as klystron discharges) detune the resonant circuit.
- Modulator utilizes frequency modulation (FM) operation to obtain a well-regulated output pulse
- Excellent fault detection, equipment protection and troubleshooting tools

SNS HVCM Disadvantages

- IGBTs operation exceeds intended application(s) and with reduced engineering safety margins
 - 20 kHz operation requires careful attention to IGBT gate drivers
 - Nominal operation at ~70% of device rating requires fast snubbers and low parasitic inductance in H-bridge
- Load-sensitive topology requires variations for variety of klystron load configurations at accelerator facility
- Resonant capacitor sees full voltage reversal difficult to design high reliability capacitor
- 6-pulse controller rectifier converter generates harmonics and variable PF on utility grid

SNS HVCM Disadvantages

Pulsed Power Engineering Winter 2025

Nominal Conditions: 78 kV, 114 Amps

Waveform: 78 kV, 88 Amps 10 kV Overshoot

Scenario: HPRF Klystron Emission Curve Testing

Capacitor Requirements

3100 pF

20 kHz

≤10%

25 kA

90 A

10 A

- Capacitance ٠
- Rated Voltage ٠
- Test Voltage ٠
- **Operating Voltage** .
- **Operating Frequency** ٠
- **Operating Duty Cycle** •
- Peak Fault Current ٠
- Peak Operating Current ٠
- **RMS** Current ٠

SNS HVCM Assemblies

HVCM under test with Safety Enclosure removed and partial storage capacitor array

Energy Storage Capacitors

•112 mF (16 mF × 7) at up to ±1300 V

- •75 kJ nominally each, rated for up to 95 kJ each
- •Large metallized film units provide selfclearing capabilities in the event of an internal fault
- •Bus work to H-bridge switch plates consists of 40 parallel fire-retardant RG-8 coaxial cables
- •Safety circuitry, bleeder resistor, DC voltage diagnostics mounted on top

HVCM Energy Storage Capacitor Waveforms

SNS HVCM – Safety Enclosure

H-bridge Operation Fundamentals

•Four solid-state switches create bipolar square voltage pulses across the load

•Dead-time necessary to allow switches to recover

•If switches don't recover, shoot-thru event can occur and destroy switches on left- or right-hand of bridge

HVCM IGBT Waveforms

HVCM IGBT H-bridge switch plate

•Four H-bridge 3300 V, 1200 A Infineon IGBTs switching nominal 20 kHz mounted on discrete cold plates with bus work towards center.

- •Unipolar and bipolar capacitors provide high frequency bypass
- •Gate drivers located remotely with low impedance cabling to IGBT terminals
- •Gate driver power supply distributes 24 V DC
- •RCD snubbers incorporated to eliminate IGBT overvoltage

New IGBT gate drivers also lower losses & reduce ripple

- Uses commercial Power Integrations 30 A driver
- Demonstrated IGBT switching loss reduction of 30%
- ~5X reduction in RF forward power ripple due to reduced dead band

SNS HVCM – High Voltage Oil Tank

27

High voltage components inside oil-filled tank

Pulse flattening to compensate for capacitor droop

- Reduces voltage stress on klystrons & modulator components
 - Utilizing frequency modulation only
 - Phase shift pulse width modulation effective but increases switching losses in right-hand side of H-bridge
- IGBT commutation currents increase by 40% but still acceptable hard switching in some cases
- Reduces LLRF bandwidth requirements

Alternate Topology (AT)-HVCM Developed to Reduce Component Stress and Achieve Soft Switching

Cold Linac Alternate Topology (AT)-HVCM

32

Warm Linac Alternate Topology (AT)-HVCM

Alternate Topology (AT)-HVCM Developed to Reduce Component Stress and Achieve Soft Switching

Necessary Conditions to Achieve zero voltage switching (ZVS)

Conditions for 7VS in resonant converter

- 1. Inductive load impedance for bridge Insures current is circulating at turn-on
- 2. Sufficient energy stored in resonant tank inductor $\frac{1}{2}$ Ll² > C_{OES}V_{CE}² 3. Sufficient dead-time

In the AT-HVCM topology, the transformer magnetizing inductance provides the stored energy

AT-HVCM IGBT Q1 V_{CE} (gold) and I_C (cyan) ZVS @ turn-on from magnetizing current

Q1 and Q4 have just been gated off. I₁ stored energy charges C_{OES} of Q1 and Q4. Current then transfers to the freewheeling diode of Q2 and Q3 allowing zero voltage at turn on of those transistors.

AT-HVCM Frequency Modulation Performance

- Transfer function peaks at 23kHz and falls off below and above resonance.
- Gradient is 2x greater when operating below resonance.
- A 5% droop in capacitor bank voltage (equivalent to 2/37 gain change) compensated by 2kHz frequency sweep.

Particle Accelerator School

- Operating below resonance provides minimum IGBT switching loss and minimum frequency sweep for pulse flattening.
- Typical AT-HVCM IGBT losses are 30 J/macropulse (1.8kW) compared with 50 J/macropulse (3.0kW) for the present HVCM, further improving system efficiency.

Laminate bus assembly provides a low impedance DC bus connection to IGBT switchplates from capacitor bank

New Laminate Bus Installation

Present SNS Status

RFQ Utilities	DTL RF Windows						CCL RF Windows				
RFQ	DTL1	DTL2	DTL3	DTL4	DTL5	DTL6	CCL1	CCL2	CCL3	CCL4	
Xmtr	Xmtr	Xmtr	Xmtr	Xmtr	Xmtr	Xmtr	Xmtr	Xmtr	Xmtr	Xmtr	
722.43 kW Rdy. For HV	739.00 kW Rdy. For HV	1786.46 kW Rdy. For HV	1932.48 kW Rdy. For HV	3399.93 kW Rdy. For HV	1782.55 kW Rdy. For HV	1223.60 kW Rdy. For HV	2863.53 kW Rdy. For HV	5305.44 kW Rdy. For HV	4208.99 kW Rdy. For HV	4983.15 kW Rdy. For HV	
HPMod		_	Mod DTL3	[Mod DTL5	-	HPMod	HPMod	HPMod	Mod CCL4	
118.00			124.00		126.00		134.00	137.00	122.00	124.00	
V124S			V124S				V124S	HPMod	V124S		
UtilBrd			UtilBrd				UtilBrd	Timina	UtilBrd		
liming			liming			Madium Bata	Liming			Timing	
DC Pige PS		DC Piac P	ব	DCI	Bion DQ	- Wealum Deta	r a nigri beta	DC Pipe PS		DC Pipe PS	
Cooling		Cooling		C	poling			Cooling		Cooling	
SCL 1 SC	L 2 SCL 3 S	CL 4 SCL 5	SCL 6 SCL	7 SCL 8 SC	L 9 SCL 10 S	SCL 11		SCL 12 S	CL 13 SCL 1	4 SCL 15	SCL 16
						High	Medium				Beta CM
		┯┙				Beta Ch					└╀╅┓╌╸┣
Xmtr 1	Xmtr 3	Xmtr 5	Xmtr 7	Xm	tr 9 🛛	Kmtr 11	.	Xmtr 1	2 🛛 🗙	mtr 14 Xm	r 15
Rdy. For HV	Rdy. For HV	Rdy. For H	V Rdy. Fo	r HV Rdy.	For HV R	dy. For HV		Rdy. Fo	r HV Rd	y. For HV Rdy.	For HV
Mod SCL01		Mod SCL	05	Moc	I SCL09	J	• •	Mod S	CL12 M	od SCL14	
78.00	0 %	77.01	20 %	80.0	3 C Info 20 %			80.00	80 nfo 20 %	.00 IOC Info 4 %	
Cool/PS PLC		Beckhoff I	10	Bec	khoff I/O			Beckho	off I/O	Timing	
V124S		V124S			/124S			V12	4S	LitilDrd	
Timing		Timing			Timing			Timi	ng	OtilDIG	
	DC Bios	DO		Dice DC		DC Digo D	ন		DCB	ac PS	
	Coolin	g		Cooling		Cooling			Coo	ling	
S	CL 17 SCL 1	18 SCL 19	SCL 20	SCL 21 SCL	. 22 SCL 23	SCL 25	SCL 2	7 SCL 28	SCL 29 SCI	30 SCL 31	SCL 32
High Bota CM											
				┠┅┯┅┲┉					يف المحمد		
◄	Cmtr 17	Xmtr 18	Xmtr 20	Xmtr 21	Xmtr 22	Xmtr 25	Xmtr 2/	Xmtr 28	3 Xmtr	30 Xm	<u>r 31</u>
R	dy. For HV	Rdy. For H	IV Rdy. For	HV Rdy. Fo	or HV Rdy. I	For HV Rdy.	For HV				
◄	Nod SCL15	Mod SCL1	8	Mod SCL21		Mod SCL	25	Mod SCI	28	Mod	SCL30
78	IOC Info 19 %	80.01	19 %	80.00 IOC Info	19 %	80.00	0 14 %	79.04	io 8 %	78.00	Info 15.04
E	Beckhoff I/O	Beckhoff I	0	Beckhoff I/O		Cool/PS F	2LC	Cool/PS I	PLC	Cool/	PS PLC
	V124S	V124S		V124S		V124S		V124S	3	V1	24S
	Timing	Timing		Timing		Timing		Timing	3	Tir	ning

